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Naive Bayes.

1.0 INTRODUCTION

Class imbalance happens when there is a significant difference betwethe number of
classes, where the negative class is greater than the positive one[l1]. This imbalance has a
negative impact on the classification results when the minority class is often misclassified as the
majority class because theoreticaly the majority classifier assumes a relatively balanced
distribution [2]. Aside from class imbalance, another problem that often arises is the large
nuraer of attributesin the dataset.

The default credit Ca;d client datasetis a dataset that stores credit card client data, starting
from personal data, Elstory of past payment, delayed payments, and amount of bill
statements. This caasei has a relatively large number of atfributes. The number of attributs in
this dataset is 23. In the default of credit card client dataset, the attribute values vary widely
and are divided inti unequal classes. The large number of attributs, especially in unbalanced
datasets, can affect the classification performance results[3]. Based on these problems, this
study tries to apply feature selection to increace the accuracy value.

In this rmarch, the algorithm that will be used is information gain and gain ratio. The
evaluation process is corm:i out using k-fold cross validation to determine the effect of using
feature selection before the classification process with the Ndive Bayes classification method.
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The feature selection was chosen because it can overcome the problem of data imbalance
in high dimﬁsions data [4][5][6][7]. Several studies have found out that Feature selection could
increase the accuracy value of the classification results [8]. 46

Ndive Bayes is one of the classification methods that will be EB2d in this research. Naive
Bayes will be combined with two feature selection methods. With the use of feature selection,
it is expected to be able to increase the accuracy of the classification results. The results of
using feature selection in classification will be compared between information gain and gain
ratio.

2.0 THEORETICAL

2.1. Imbalanced Class &Feature Selection

Imbalanced classis a common problem in machine learning classification process when there
is a disproportionate ratio in each class. The types of imbalanced class algorithms are:

a. Undersampling Ic:ncing the dataset by reducing excessive class size)

b. Oversampling, (Balancing the dataset by increasing the size of the rare sample).

Feature selection is one technigque most important and frequent used in pre-processing. Pre-
processing is a process before the data mining process begins[?]. Main goal from selection
feature is choose feature best from whole features used number of method selection feature
among other :

a. Information Gain 20
Information Gain is defined as the effectiveness level of an aftribute in classifying data.
Mathematically, the information gain of attribute A is written as

Gain(s, A) = Entropy(§S) — Z @ Entropy(S,)

veEvalues(A) s

EBscription :

A : attribute

V : possible values for attribute A

Values(A) : The set of possible values for atftribute A

| Svl : number of samples for the value of v

|S| : total sample data

b. Gain Ratio

Gain ratio (GR) is a modification of the information gain that reduces its bias [?]. Information
gain will face problems in handling attributes that have hugely varied values. To solve this
problem, one can use another measure, i.e. the gain ratio which can be calculated based
on the split information :

C
Splitinformation(s, A) = —ﬂ Logzﬂ
51 5]
i=1
Where § is data sample set, and $1 to Sc are the sEBets of the data sample grouped
based on the number of variations in the value of attribute A. Next, the gain ratio is
formulated as information gain divided by split information.

Gain(§,4)
Splitinformation(S, A)

GainRatio(S,A) =

2.3. Ndive Bayes Classification

Classification is used to assign data objects info a limited number of classes/categories,
and can be defined c:process to put data objects info one of the categories (classes)
previously defined [10]. The Ndive Ba Classifier is a classification method rooted in Bayes'
theorem. The classification metho roposed by British scientist Thomas Bayes that uses
probability and statistical methods to predicts future values based on past experience, is known
as Bayes' theorem. The main feature of Ndive Bayes Classifier is a very strong (naive) assumption
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2
of the independence of each condition/event.%is algorithm assumes that object attributes
are independent. The probabilities involved in producing final esiimoiion@e calculated as
the sum of the frequencies from the "master” decision table.ive Bayes Classifier works very
well compared to other classifier models [11]. Theeporied that "Naive Bayes Classifier gives
better accuracy rate than other classifier models". The advantage of this method is that it only
requires a small amount of fraining data to determine the parameter estimates needed in the
classification process. Since it is assumed to be an independent variable, only the variance of
a variable in a class is needed to determine the classification, not the entire covariance matrix.

3.0 METHODOLOGY
The research flow to compare various feature selection methods in the classification
process of datasets that have imbalanced class can be seen in figure 1.

Pre Processing
(Feature Selection)

L

Information
Gain

I

k-fold cross validati ~

Classification

(Naive Bayes)

Accuracy

Figure 1. Research Flow
14

Figure 1 shows the flow of the research, from the collectiongthe dataset, to the accuracy
of the resulfs. T@rsi stage in this research is the process of collecting data to be used as
dataset, which is the default of credit card client data taken from UCI machine learning.
Having determined the dataset, the pre-processing stage is then caried out for feature
selection. The feature selections to be compared are information gain and gain ratio. Having
established feature selection, a new dataset will emerge that wil then be used for the
classification process. The classification was caried out three times, the first was for the original
dataset without being subjec to feature selection. The second classification is for dataset
from the pre-processing using information gain feature selection, and the third classification is
for the dataset from pre-processing using gain ratio feature selection. All three classification
processes are carried out using Ndive Bayes method.

Research evaluation/testing was performed by calculating the accuracy value using 10-
fold cross validation. The c:chieveam indicator in this research shows different accuracy
results between classification with Naive Bayes only, Naive Bayes accuracy with information
gain, and Ndive Bayes with gain ratio.

4.0 {JuLrs

The data used in thisresearch is public data from the UCImachine leaming repository, i.e.,
the default of credit card clienfs. This dataset has 30,000 data records with as many as 23
attributes:
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X1 : amount of the given credit (NT dollar)
X2 : Gender, (1: male, 2 : female)

X3 : Education, (1 : graduate school, 2 : university, 3 : high school and 4 : ofhers)
X4 : Marital Status , (1 : maried, 2 unmarried dan 3 : other)
X5: Age

X6 : History of past payment for september 2005
X7 : History of past payment for august 2005

X8 : History of past payment for july 2005

X9 : History of past payment for june 2005

X10 : History of past payment for may 2005

X11 : History of past payment for april 2005

For attribute values Xé to X11, the possible values are -1, 1,2,3,4,5,6,7,8, and 9.
1

-1 pcy!n time

: delay payment for one month

: delay payment for two month

- delay payment for three month

: delay payment for four month

: delay payment for five month

: delay payment for six month

: delay payment for seven month

: delay payment for eight month

: delay payment for nine month

000 N O U W R —

a

X12 : Amount of bill statement for september 2005
X13 : Amount of bill statement for august 2005

X14 : Amount of bill statement for july 2005

X15 : Amount of bill statement for june 2005

X16 : Amount of bill statement for may 2005

X17 : Amount of bill statement for april 2005

X18 : Amount of previous payment for september 2005
X19 : Amount of previous payment for august 2005
X20 : Amount of previous payment for july 2005
X21 : Amount of previous payment for june 2005
X22 : Amount of previous payment for may 2005
X23 : Amount of previous payment for april 2005

The distribution of data classes from the default data of credit card clients includes:
a. 0as 6.636 (78%)
b. 1as23.364 (22%)

The 0 in the dataset class means the payment defaultis 'no’and 1 is 'yes'. From the class division,
itis clear that the dataset isimbalanced because the majority contain 0 (as high as 78%) which
is very high compared with the value of 1 which is only 22%.

Examples of data used in this research can be seen in figure 2.
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4.1 Testing

Figure 2. Sample data of credit card clients
The study was conducted using rapid miner machine learning tools to see the accuracy
of the use of feature selection in unbalanced datasets using naive bayes classification.
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The first test was performed for the classification of the default dataset of credit card
clients using the Naive Bayes classification method. The classification is done without fechm

selection and the results were then tested. The test is performed using k-fold cross validation to
determia the accuracy value of the classification results. The accuracy of the classification
results is shown in Figure 3.

accuracy: 64.27% +/- 6.11% (micro average: 64.27%)

true 1 true 0 class precision
pred. 1 1505 2819 3481%
pred. 0 754 4922 B6.72%
class recall 66.62% 63.58%

Figure 3. Classification accuracy of ndive bayes

Figure 3 shows that the accuracy value is 64.27%, which is considered not too high, so
other methods are needed fo increase the accuracy value, one of which is by performing
feature selection as one of the pre-processing methods on the dataset before performing the
Nalve Bayes classification process.

The next test utilizes one of the feature selection methods. i.e., information gain. The
dataset used is still the same as the previous one. The weigiil§ of the attributes resulted from
feature selection process using the information gain method Ekshown in table 1.
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Table 1. Weighting attribute Information Gain

AttiTbute Weight
X1 0,010
X2 0,001
X3 0,003
X4 0,001
X5 0,002
Xé 0,076
X7 0,060
X8 0,050
X9 0,042
X10 0,040
X1 0,032
X12 0,001
X13 0,001
X14 B]I
X15 0,001
X16 0,001
X17 0,000
X18 0,013
X19 0,013
X20 0,011
X2 0,010
X22 0,006
X23 0,008

From table 1, it is clear that of the 23 attributes used, the Xé attribute has the biggest
value of 0.076, while the smallest of all attributes is the X17 with a value of 0.000. Some cmrib@s
appear to have relatively small values so that they do not have much [efffect on the
classification process. In this research, the top 12 attributes with biast values were selected,
and based on the results of information gain, the 12 attributes are: Xé, X7, X8, X9, X10, X11, X18,
X19, X20, X1, X21, and X23.

Having selected the top 12 attiibutes, those attributes were then clcssiﬁeaing Naive
Bayes classification method. The results of the classification using the new dataset can increase
the accuracy of the classification results. The accuracy before using feature selection is 64.27%
while classification accuracy using information gain is 69.54%. So it is clear that infonmion
gain can increase accuracy by 5.27%. The results of accuracy testing in rapid miners are shown
in Figure 4.

accuracy: 69.54% +/- 5.88% (micro average: 69.54%)

true 1 true 0 class precision
pred. 1 139 2178 38.97%
pred. 0 868 5563 86.50%
class recall 61.58% 71.86%

Figure 4. Accuraty of ndive bayes with information gain
The next test is performed by using another feature selection method, i.e. the gain ratio.

The dc:tt used is still the same as the dataset for the previous test. The values obtained
through the feature selection process using the gain ratio method are shown in table 2.
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Table 2. Weighting attribute Gain Ratio

Attribute Weight
X1 0,028
X2 0,001
X3 0,002
X4 0.001
X5 0,048
X6 0,153
X7 0,101
X8 0,146
X9 0,086
X10 0,146
X1 0,156
X12 0,032
X13 0,045
X14 0,028
0.029
X1é 0,030
xX17 0,146
X18 0,028
X19 0,028
X20 0,028
X21 0,032
X22 0,025
X23 0,028

From table 2, itis clear that the largest value of the 23 attributes attribute X11 (History of
past payment in April 2005) with a value of 0.156. While the smallest value of all attributes is X2
(gender) and X4 (marital status) with a valee of 0.001. Some atiributes seem to have relatively
small values so as to have m@ effect on the classification process. In this research, the top 12
attributes with largest values were selected, and based on the results of the gain ration, the 12
atfributes are X11, Xé, X17, X10, X9, X7, X9, X5, X13, X21, X12, and X16.

Having selected the top 12 attributes, those attributes were then classified using Nd
Bayes classification method. The results of classification using the new dataset are shown to
increase the accuracy of the classification results. The accuracy before using feature selection
is 64.27% while the classification accuracy using gain ratio is 78.46%, so the gain ratio gives an
increased accuracy of 14.19%. This value is much higher when compared with the results of
information gain feature selection (with an accuracy of 5.27%). This could happen because in
theory, Information gain tends to have problems with attributes with greatly varied values. And
the atfributes of the dataset used in this research vary greatly so that the increase in accuracy
is not too significant. The results of accuracy testing in rapid miners are shown in Figure 5.

accuracy: 78.46% +/. 1.31% (micro average: 78.46%)

frue 1 frue 0 class precision
pred. 1 935 830 52.97%
pred. 0 1324 6911 83.92%
class recall 41.39% 89.28%

Figure 5. Accuraty of ndive bayes with gain ratio
Based on the results of the study, it can be seen a compc:ri& of the accuracy of
various tests as shown in Table 3 while the accuracy comparison chart can be seen in Figure 6.
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Table 3 comparison of accuracy results

Method accuracy
Naive Bayes 64,27%
Nadive bayes + Information Gain 69,54%
Naive Bayes + Gain Ratio 78,46%

Based on figur t can be seen that the highest accuracy is when the classification is
carried out by utilizing the feature selection gain ratio method. The lowest accuracy is when
the classification is carried out without the use of feature selection.

Accuracy

80.00%
70.00%
60.00%
50.00%
40.00%
30.00%
20.00%
10.00%

0.00% @
alve Bayes Naive bayes + Naive Bayes + Gain
Information Gain Ratio

Figure 6. Accuracy Comparison Chart

The presentation of differences in classification accuracy results can be clearer when
viewed from the gr’op@rough figure 6, it can be easily seen the difference in accuracy results
between the use of the ndive bayes method alone, the na‘fve:)ayes method which is
combined with the feature selection of information gain and them:ﬁve bayes method
combined with the feature selection of gain ratio. Based on figure 6, it can be seen that the
greatest accuracy is the use of the ndive bayes method combined with the selection of the
gain ratio feature.

5.0 CONCLUSION

Based on the discussion that has been descrilffefl, it can be concluded that feature
selection is one way that can be used to increase the accuracy value of the classification
results. Feature selection i@ane by selecting the best features in the dataset. After going
through several tests using feature selection, it can be said that the best feature selection for
attributes whose values vary is the gain ratio. Information gain is only able to slightly increase
the value of accuracy because information gain is not saoble for datasets that have varying
attribute values. The results of classification accuracy on the default of credit card client
dataset using Naive Bayes are 64.27%. The information gain feature selection can increase
accuracy by 5.27% (from 64.27% to 69.54%). The gain ratio feature selection can increase
accuracy by 14.19% (from 64.27% to 78.46%). Gain ratio is more suitable for data whose
attribute values vary widely
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