BAB II TINJAUAN PUSTAKA

Penelitian yang dilakukan oleh (Daigavane & Gaikwad, 2017) dengan judul "Water Quality Monitoring System Based on IOT" membahas inovasi dalam mengatasi polusi air dengan metode perancangan sistem IOT. Data yang digunakan dalam penelitian ini antara lain Suhu, kekeruhan dan pH air dan diproses menggunakan model ATMEGA 328 dengan Wi-Fi. Menurut Penelitian (Bhatt & Jignesh, 2016) dengan judul "IoT Based Water Quality Monitoring System" membahas polusi lingkungan, terutama polusi pada air. Metode yang digunakan adalah dengan membangun sistem solusi IoT, dengan data masukan dari pH, kekeruhan, saturasi oksigen, suhu air. Kontribusi yang dihasilkan antara lain perancangan Sistem monitoring kualitas air secara realtime menggunakan raspberry pi yang dihubungkan dengan Zigbee sebagai interkoneksi ke jaringan. Sementara penelitian (Marathe et al., 2021) dengan judul "IoT based Water Leakage Detection using Smart Objects for Smart City", yang membahas mengenai inovasi pada *smart city*, bermula dari permasalahan pemborosan sumber daya air di sekitar lingkungan yang belum terdeteksi. Akibat dari pemborosan tersebut, terjadi potensi kelangkaan air dalam kota. Kontribusi yang dihasilkan dalam penelitian ini mampu melakukan pemantuan kebocoran air dalam saluran pipa dan menghasilkan sistem pendeteksi kebocoran air menggunakan Node MCU dan peringatan dini menggunakan thingspeak.

Penelitian lain oleh (Sairam Nadipalli et al., 2021) berjudul "Water Conservation Control by using IoT Smart Meter" berangkat dari masalah peningkatan populasi penduduk yang berdampak pada krisis air karena level air tanah menurun. Penelitian ini berkontribusi terhadap pengukuran realtime konsumsi air dengan metode implementasi sistem pengukur volume air menggunakan IoT. Hasilnya adalah implementasi smart water meter menggunakan ESP8266 dan server berbasis cloud (Thinger.io). Sedangkan penelitian yang dilakukan oleh (Ajith Jerom et al., 2020) dengan judul "An IoT Based Smart Water Quality Monitoring System using Cloud" membahas polusi air di India meningkat

yang berdampak pada bahaya serius terhadap tanaman dan kesuruburan tanah. Data yang digunakan suhu, *humadity*, ph, saturasi oksigen pada air, dan berkontribusi pada pengukuran *realtime* kualitas air dalam laut/waduk dengan metode menghitung kontaminasi air dari data yang diambil melalui beberapa sensor yang berbeda dan diolah menggunakan *machine learning*, Hasil dari penelitian ini adalah implementasi menggunakan NodeMCU ESP8266. Di tahun yang sama, penelitian dilakukan oleh (P et al., 2020) dengan judul "Sensor Based Waste Water Monitoring for Agriculture Using IoT" membahas pencemaran pestisida dan faktor lain pada sistem pertanian yang berdampak pada polusi air pada pertanian. Data yang digunakan pH, kekeruhan, suhu, TDS air, dengan kontribusi pemantauan kualitas air pada waduk untuk pertanian, memberikan alert langsung dan mengirim alert ke instansi berwenang. Metode yang digunakan dengan mengukur kulitas air, memberikan hasil pantauan langsung di lokasi, mengirimkan alert ke stakeholder, dan menyimpan data di cloud. Hasilnya berupa implementasi menggunakan Arduino ESP8266 dengan GSM Module dan Display.

Kemudian penelitan (Hamid et al., 2020) dengan judul "IoT based Water Quality Monitoring System and Evaluation" membahas permasalahan yang terjadi pada kolam renang yakni level pH yang tinggi. Permasalah ini berdampak reaksi serius pada mata dan kulit pengguna kolam. Data yang digunakan dalam penelitian ini pH dan suhu air, dan metode yang digunakan dengan mengambil data dari sensor pH dan suhu menggunakan IoT, mengirim alert menggunakan telegram jika melewati threshold tertentu dan mengirim data menjadi dashboard di Ubidots. Kontribusi dari penelitian yaitu kemampuan monitoring kualitas air dan memberikan warning. (Hattaraki et al., 2020) dengan penelitian berjudul "Integrated Water Monitoring and Control System" membahas permasalahan mengenai pengukuran dan pemantauan air pada tangki yang masih dilakukan manual. Dampaknya diperlukan usaha yang lebih bagi organisasi penyedia air, untuk melakukan monitoring kualitas air, dan penyimpanan air. Penelitian menggunakan metode menghitung air dalam tangki penampung, menentukan tangki yang masih tersedia, dan melakukan buka tutup valve air input serta melakukan pengukuran kualitas air. Data yang digunakan meliputi kelembaban,

data aliran air, level air, kualitas air. Kontribusi nya berupa sistem *monitoring* dan kontrol penyimpanan air yang efisien dan menghasilkan sistem implementasi *Total Water Monitoring*.

Penelitian selanjutnya oleh (Memon et al., 2020) dalam judul "IoT Based Water Quality Monitoring System for Safe Drinking Water in Pakistan", membahas mengenai peningkatan pabrik dan kendaraan yang meningkatkan polusi air pada sungai, laut dan danau. Data yang digunakan antara lain pH, kekeruhan, dan suhu air. Metode yang digunakan menggunakan turbidity sensor, pH sensor, temperature sensor dan ultrasonic sensor pada WeMos D1 dan mengirim data ke IoT cloud ThingSpeak. Kontribusi dari penelitian ini yaitu adanya sistem monitoring air yang cost effective, lebih efisen, dan menghasilkan data yang realtime dan dapat digunakan dalam skala rumah tangga maupun industri.

Berangkat dari permasalah air tanah di India yang mengalami pengurangan drastis akibat globalisasi dan urbanisasi serta mempengaruhi fenomena kualitas air hujan, (Ranjan et al., 2020) melakukan penelitian dengan judul "The Internet of Things (IOT) Based Smart Rain Water Harvesting System". Metode yang dilakukan dengan mengukur kualitas pH pada air hujan yang ditampung, dan memilih lokasi penyimpanan yang sesuai. Data yang digunakan hanyalah pH dari air hujan tersebut. Kontribusinya kemampuan memanen air hujan berdasarkan kualitasnya. Dan hasil dari penelitian ini adalah *Project* RWHS menggunakan ESP8266. Masih di tahun yang sama, (Ray & Goswami, 2020) melakukan penelitian dengan judul "IoT and Cloud Computing based Smart Water Metering System". Berawal dari permasalahan kurangnya rencana dari pemerintah, meningkatnya privatisasi perusahaan, dan limbah dari industri dan rumah tangga yang berdampak pada krisis air di India, penelitian ini menghasilkan Smart Water Meter menggunakan NodeMCU. kontribusi penelitian ini kemampuan mengurangi potensi kebocoran air dengan Machine Learning. Data yang digunakan adalah sensor dari konsumsi air dengan metode penggunaan machine learning untuk mengidentifikasi jenis aliran air.

Sementara di Irak, penelitian dengan judul "Drinking Water Monitoring in Mosul City Using IoT" oleh (Al-Khashab et al., 2019), membahas polusi air dam di kota Mosul. Masalah ini berdampak pada pengecekan kualitas air dilakukan manual. Data yang digunakan dalam penelitian ini antara lain pH, EC, TDS, Suhu, kekeruhan air. Kontribusinya implementasi alat ukur otomatis dengan biaya lebih rendah dengan metode mengukur air menggunakan sensor, mengunggah ke Thingspeak, melakukan perhitungan dan mengirimkan hasilnya PC/Smartphone. (Arun et al., 2019) dalam penelitiannya yang berjudul "Smart Water Management in Agricultural Land Using IoT" membahas permasalahan Kondisi iklim yang tidak menentu yang berdampak pada Lahan pertanian kekurangan air. Data yang digunakan Suhu, kelembaban, dan pH air dengan metode mengukur kondisi lingkungan, dan menentukan waktu irigasi. Kontribusinya mengembangkan module untuk mengatasi kelangkaan air dengan metode recycle dan menghasilkan implementasi Smart Water Management.

Dalam bidang peternakan, (Billah et al., 2019) melakukan penelitian dengan judul "Real-time Monitoring of Water Quality in Animal Farm: An IoT Application" . penelitian membahas permasalan mengenai kendala dalam memantau kualitas air, yang berdampak pada pencemaran lingkungan karena air limbah ternak. Kontribusi dari penelitian ini yaitu mengembangkan aplikasi IoT yang memantau kualitas air dari peternakan untuk mencegah dampak lingkungan. Metode yang digunakan mengurangi interfensi manusia dalam pemantauan kualitas air. Hasilnya Implementasi sistem pemantauan menggunakan CC3200. Sedangkan di Indonesia sendiri, (Budiarti et al., 2019) dengan penelitiannya yang berjudul "Development of IoT for Automated Water Quality Monitoring System" membahas permasalahan dalam sensor kualitas air, di mana terdapat beberapa tipe sensor pasif dan aktif. Dampak dari masalah ini monitoring kualitas air belum terintegrasi. Penelitian menggunakan data scrapping web dan digabung dengan data sensor aktif dengan metode melakukan scrapping web sebagai sensor pasif, dan menggunakan sensor aktif. Kontribusi dari penelitian ini mengembangkan IoT untuk memantau kualitas air secara otomatis. Hasilnya adalah platform IoT yang menggunakan Raspberry Pi B dengan active sensor dan passive sensor.

Tabel 2.1 Rangkuman tinjauan pustaka

No	Penulis	Domain Penelitian	Permasalahan	Dampak	Data	Metode	Kontribusi	Hasil
1	(Daigavane & Gaikwad, 2017)	Inovasi mengguna kan IoT	masif nya penemuan di abad 21	Polusi air yang melanda dunia	Suhu, kekeruha n dan pH air	perancangan sistem IOT	monitor kualitas air minum secara <i>realtime</i>	Sistem <i>monitoring</i> kualitas air secara <i>realtime</i> dengan biaya rendah
2	(Bhatt & Jignesh, 2016)	Inovasi mengguna kan IoT	polusi lingkungan	penyakit dikarenakan air yang tidak aman	pH, kekeruha n, saturasi oksigen, suhu	perancangan sistem menggunaka n raspberry pi using Zigbee protocol	monitor kualitas air minum secara realtime	Sistem <i>monitoring</i> kualitas air secara <i>realtime</i> menggunakan raspberry pi
3	(Marathe et al., 2021)	Inovasi Smart City	Pemborosan sumber daya air di sekitar yang belum terdeksi	pemborosan air	tekanan air	smart object pendeteksi kebocoran air	pemantuan kebocoran air dalam saluran pipa	Sistem pendeteksi kebocoran air menggunakan Node MCU dan peringatan dini menggunakan thingspeak
4	(Sairam Nadipalli et al., 2021)	Konservasi air mengguna kan IoT	peningkatan populasi penduduk	Krisis air karena level air tanah menurun	aliran air	implementas i sistem pengukur volume air	pengukuran <i>realtime</i> konsumsi air	implementasi <i>smart water meter</i> menggunakan ESP8266 dan <i>server</i> berbasis <i>cloud</i> (Thinger.io)

5	(Ajith Jerom et al., 2020)	Smart System dalam monitoring kualitas air di dam	polusi air di India meningkat	bahaya serius terhadap tanaman dan kesuruburan tanah	suhu, humadity , ph, saturasi oksigen	menghitung kontaminasi air dari data yang diambil dari beberapa sensor yang berbeda dan di olah menggunaka n machine learning	pengukuran <i>realtime</i> kualitas air dalam laut/waduk	implementasi menggunakan NodeMCU ESP8266
6	(P et al., 2020)	Smart Agricultur e	pencemaran pestisida dan faktor lain pada sistem pertanian	polusi air pada pertanian	pH, kekeruha n , suhu, TDS	mengukur kulitas air, memberikan monitor langsung di lokasi, mengirimka n alert ke stakeholder, dan menyimpan data di cloud	monitor kualitas air pada waduk untuk pertanian, memberikan <i>alert</i> langsung dan mengirim <i>alert</i> ke instansi berwenang	implementasi menggunakan Arduino ESP8266 dengan GSM <i>module</i> dan <i>display</i>

7	(Hamid et al., 2020)	Monitoring Kualitas Air pada Kolam Renang	level pH tinggi pada air kolam renang	reaksi serius pada mata dan kulit pengguna kolam	pH, suhu air	mengambil data dari sensor pH dan suhu menggunaka n IoT, mengirim alert menggunaka n telegram jika melewati threshold tertentu, mengirim data menjadi dashboard di Ubidots	monitor kualitas air dan memberikan warning	implementasi IoT menggunakan ESP8266, dan <i>dashboard</i> ubidots
8	(Hattaraki et al., 2020)	otomasi sistem pengeceka n kuantitas dan kualitas air secara menyeluru h	pengukuran dan pemantauan air pada tangki masih dilakukan manual	diperlukan usaha yang lebih bagi organisasi penyedia air,untuk melakukan monitoring kualitas air,dan penyimpana n air	kelemba baban, data aliran air, level air, kualitas air	menghitung air dalam tangki penampung, menentukan tangki yang masih tersedia, dan melakukan buka tutup valve air input. Melakukan pengukuran kualitas air	sistem <i>monitoring</i> dan kontrol penyimpanan air yang efisien	implementasi <i>Total Water</i> <i>Monitoring</i>

9	(Memon et al., 2020)	IoT yang cost effective untuk monitor kualitas air	peningkatan pabrik dan kendaraan meningkatkan polusi air pada sungai, laut dan danau	kerusakan ekosistem dan kehidupan bawah air	pH, kekeruha n, dan suhu air	menggunaka n turbidity sensor, pH sensor, temperature sensor dan ultrasonic sensor pada WeMos D1 dan mengirim data ke IoT cloud ThingSpeak	sistem monitoring air yang cost effective, lebih efisien, dan menghasilkan data yang realtime dan dapat digunakan dalam skala rumah tangga maupun industri	implementasi sistem yang efektif berbasis IoT (WeMos D1 mini) untuk mengukur pH, kekeruhan, dan suhu air
10	(Ranjan et al., 2020)	Pemanfaat an air Hujan berdasarka n kualitas	air tanah di India mengalami pengurangan yang drastis. globalisasi dan urbanisasi mempengaruhi fenomena kualitas air hujan	kualitas air hujan menurun	рН	mengukur kualitas pH pada air hujan yang di tampung, dan memilih lokasi penyimpana n yang sesuai	memanen air hujan berdasarkan kualitas	Project RWHS menggunakan ESP8266
11	(Ray & Goswami, 2020)	Sistem pengukura n penggunaa n air berbasis IoT	kurangnya rencana dari pemerintah, meningkatnya privatisasi perusahaan, dan limbah dari industri dan rumah tangga	Krisis air di India	Konsums i air	menggunaka n machine learning untuk mengidentifi kasi jenis aliran air	mengurangi potensi kebocoran air dengan machine learning	Smart Water Meter menggunakan NodeMCU

12	(Al-Khashab et al., 2019)	SmartCity	Polusi air dam di kota Mosul, harga alat pengukur kualitas air otomatis masih mahal	pengecekan kualitas air dilakukan manual	pH, EC, TDS, Suhu, kekeruha n air	Mengukur air menggunaka n sensor, mengunggah ke Thingspeak, melakukan perhitungan, dan mengirimka n hasilnya ke PC/Smartph one	implementasi alat ukur otomatis dengan biaya lebih rendah	Implementasi menggunakan arduino uno yang terkoneksi ke Thingspeak
13	(Arun et al., 2019)	Manajeme n Air di Lahan Pertanian	Kondisi iklim yang tidak menentu	Lahan pertanian kekurangan air	Suhu,kel embaban, pH	mengukur kondisi lingkuhan, dan menentukan waktu irigasi	mengembangkan modul untuk mengatasi kelangkaan air dengan metode <i>recycle</i>	implementasi Smart Water Management
14	(Billah et al., 2019)	Manajeme n Air di Peternakan	Kendala memantau kualitas air	Pencemaran lingkungan karena air limbah ternak	Suhu, kekeruha n dan pH air	mengurangi interfensi manusia dalam pemantuan kualitas air	mengembangkan aplikasi IoT yang memantau kualitas air dari peternakan untuk mencegah dampak lingkungan	Implementasi sistem pemantauan menggunakan CC3200

15	(Budiarti et al., 2019)	Pemantaua n kualitas air PDAM	terdapat beberapa tipe sensor pasif dan aktif	pemantauan kualitas air belum terintegrasi	scrappin g web, data sensor aktif	melakukan scrapping web sebagai sensor pasif, dan menggunaka n sensor aktif	mengembangkan IoT untuk memantau kualitas air otomatis	Platform IoT menggunakan Raspberry Pi B dengan sensor aktif sensor dan sensor pasif
16	(Penelitian yang dikerjakan, 2021)	IoT dalam industri tambang batu bara	pemantauan dan penanganan air tambang masih manual	Hasil keluaran air tidak bisa diketahui secara realtime dan mengakibatk an pemborosan batu kapur	pH air	mengukur data dari sensor, melakukan penanganan otomatis berdasarkan input dari sensor tersebut	Prototipe IoT water monitoring pada industri tambang batu bara	Air keluaran tambang sesuai dengan regulasi dari pemerintah dan penanganan lebih efisien

Penelitian yang dikerjakan (Impron Ali & Andriyani Widyastuti, 2021) membahas permasalahan IoT pada industri tambang batu bara. Berangkat dari permasalahan dalam pemantauan dan penanganan air tambang yang masih manual yang berdampak pada hasil keluaran air yang tidak bisa diketahui secara realtime dan mengakibatkan tidak *comply* dengan regulasi atau justru terjadi pemborosan batu kapur. Metode yang akan digunakan dengan mengukur data pH air dari sensor, dilanjutkan dengan penanganan air otomatis. Kontribusi dan hasil yang diharapkan mampu membangun prototipe IoT *water monitoring* pada industri tambang batu bara yang berpotensi menghasilkan air keluaran tambang yang sesuai dengan regulasi dari pemerintah dan biaya yang lebih efisien.